37 research outputs found

    Human kin detection

    Get PDF
    Natural selection has favored the evolution of behaviors that benefit not only one's genes, but also their copies in genetically related individuals. These behaviors include optimal outbreeding (choosing a mate that is neither too closely related, nor too distant), nepotism (helping kin), and spite (hurting non-kin at a personal cost), and all require some form of kin detection or kin recognition. Yet, kinship cannot be assessed directly; human kin detection relies on heuristic cues that take into account individuals' context (whether they were reared by our mother, or grew up in our home, or were given birth by our spouse), appearance (whether they smell or look like us), and ability to arouse certain feelings (whether we feel emotionally close to them). The uncertainties of kin detection, along with its dependence on social information, create ample opportunities for the evolution of deception and self-deception. For example, babies carry no unequivocal stamp of their biological father, but across cultures they are passionately claimed to resemble their mother's spouse; to the same effect, neutral' observers are greatly influenced by belief in relatedness when judging resemblance between strangers. Still, paternity uncertainty profoundly shapes human relationships, reducing not only the investment contributed by paternal versus maternal kin, but also prosocial behavior between individuals who are related through one or more males rather than females alone. Because of its relevance to racial discrimination and political preferences, the evolutionary pressure to prefer kin to non-kin has a manifold influence on society at large

    Polyandrous females avoid costs of inbreeding

    Get PDF
    Why do females typically mate with more than one male? Female mating patterns have broad implications for sexual selection, speciation and conflicts of interest between the sexes, and yet they are poorly understood. Matings inevitably have costs, and for females, the benefits of taking more than one mate are rarely obvious. One possible explanation is that females gain benefits because they can avoid using sperm from genetically incompatible males, or invest less in the offspring of such males. It has been shown that mating with more than one male can increase offspring viability, but we present the first clear demonstration that this occurs because females with several mates avoid the negative effects of genetic incompatibility. We show that in crickets, the eggs of females that mate only with siblings have decreased hatching success. However, if females mate with both a sibling and a non-sibling they avoid altogether the low egg viability associated with sibling matings. If similar effects occur in other species, inbreeding avoidance may be important in understanding the prevalence of multiple mating

    Anti-tumor necrosis factor-Α antibody treatment reduces pulmonary inflammation and methacholine hyper-responsiveness in a murine asthma model induced by house dust

    Full text link
    Background/Aims Recent studies documented that sensitization and exposure to cockroach allergens significantly increase children's asthma morbidity as well as severity, especially among inner city children. TNF-Α has been postulated to be a critical mediator directly contributing to the bronchopulmonary inflammation and airway hyper-responsiveness in asthma. This study investigated whether an anti-TNF-Α antibody would inhibit pulmonary inflammation and methacholine (Mch) hyper-responsiveness in a mouse model of asthma induced by a house dust extract containing both endotoxin and cockroach allergens. Methods A house dust sample was extracted with phosphate-buffered saline and then used for immunization and two additional pulmonary challenges of BALB/c mice. Mice were treated with an intravenous injection of anti-TNF-Α antibody or control antibody 1  h before each pulmonary challenge. Results In a kinetic study, TNF-Α levels within the bronchoalveolar lavage (BAL) fluid increased quickly peaking at 2 h while BAL levels of IL-4, IL-5, and IL-13 peaked at later time-points. Mch hyper-responsiveness was measured 24 h after the last challenge, and mice were killed 24 h later. TNF inhibition resulted in an augmentation of these Th2 cytokines. However, the allergic pulmonary inflammation was significantly reduced by anti-TNF-Α antibody treatment as demonstrated by a substantial reduction in the number of BAL eosinophils, lymphocytes, macrophages, and neutrophils compared with rat IgG-treated mice. Mch hyper-responsiveness was also significantly reduced in anti-TNF-Α antibody-treated mice and the pulmonary histology was also significantly improved. Inhibition of TNF significantly reduced eotaxin levels within the lung, suggesting a potential mechanism for the beneficial effects. These data indicate that anti-TNF-Α antibody can reduce the inflammation and pathophysiology of asthma in a murine model of asthma induced by a house dust extract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73609/1/j.1365-2222.2005.02407.x.pd

    The role of sex separation in neutral speciation

    Full text link
    Neutral speciation mechanisms based on isolation by distance and sexual selection, termed topopatric, have recently been shown to describe the observed patterns of abundance distributions and species-area relationships. Previous works have considered this type of process only in the context of hermaphrodic populations. In this work we extend a hermaphroditic model of topopatric speciation to populations where individuals are explicitly separated into males and females. We show that for a particular carrying capacity speciation occurs under similar conditions, but the number of species generated decreases as compared to the hermaphroditic case. Evolution results in fewer species having more abundant populations.Comment: 18 pages + 8 figure
    corecore